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One-dimensional partially asymmetric simple exclusion process on a ring with a defect particle

Tomohiro Sasamoto
Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
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The effect of a moving defect particle for the one-dimensional partially asymmetric simple exclusion process
on a ring is considered. The current of the ordinary particles, the speed of the defect particle, and the density
profile of the ordinary particles are calculated exactly. The phase diagram for the correlation length is identi-
fied. As a by-product, the average and the variance of the particle density of the one-dimensional partially
asymmetric simple exclusion process with open boundaries are also computed.

PACS numbegps): 02.50.Ey

I. INTRODUCTION Here 0, 1, and 2 denote an empty site, an ordinary particle,
and the defect particle, respectively. Several exact results
Recently, the one-dimensional asymmetric simple excluhave already been obtained for the=0 case[15,16. This
sion processASEP has attracted much attention in various case is referred to as the “totally asymmetric” case in the
fields of science including mathematics, physics, and biologyollowing. The current of ordinary particles, the speed of the
[1-4]. There are several reasons for this. First of all, thedefect particle, the correlation length, and the current fluc-
ASEP has a lot of applications to realistic systems. For intuation have been computed exactly for this special case.
stance, the ASEP can be considered as the simplest model diuch less is known for the “partially asymmetric” case
traffic flow [5—7]. It is also used to study the dynamics of whereq is not necessarily zero although some exact results
interface[8]. There are other applications as well. Secondwere obtained ifi17—-19. In this paper, the model is studied
the ASEP shows rich nonequilibrium behaviors such as théor the 0<gq<1 case. We compute the current of the ordi-
shock wavd 9—11], boundary-induced phase transitidi®], nary particles, the speed of the defect particle, and the den-
and the unusual dynamical scalifitB,14]. Since there is no sity profile of the ordinary particles seen from the defect
established framework for far-from equilibrium systems, theparticle. We exploit the connection of the present model to
ASEP has played an important role in nonequilibrium statisthe partially ASEP with open boundaries, which was recently
tical physics. Third, some properties of the ASEP can besolved by using the theory of theporthogonal polynomials
studied exactly by the Bethe ansatz or the so-called matrik20,21]. We do not consider thg=1 case, in which the
product ansatz. Since the effects of fluctuations becomeurrent becomes zero in the thermodynamic limit. We re-
strong in low dimensions, mean-field analysis sometimesnark that, for the partially ASEP with open boundaries, the
fails to give correct answers. Exact solutions give us an ing=1 case and thg>1 case were studied {i22] and[23],
sight how to understand the problems that cannot be solvespectively.
exactly. The paper is organized as follows. In Sec. I, the station-
The ASEP is a one-dimensional lattice gas model. Eaclary state of the process is constructed by the so-called matrix
particle tends to hop to the right with rapeand to the left product ansatz. The current of the ordinary particles and the
with rate g. In addition, they interact with one another speed of the defect particle are calculated in Sec. Ill. In Sec.
through hard-core exclusion interaction. In this paper weV the average density profile is computed. The phase dia-
consider the stationary state of the ASEP on a ring with ongram for the correlation length is identified. The concluding
defect particle. We sometimes refer to the particles as ordiremarks are given in Sec. V. In Appendix A we compute the
nary particles to distinguish them from the defect particle.average and the variance of the particle density for the par-
We assume that the defect particle tends to hop to the rightally ASEP with open boundaries. This is a by-product of
with rate @ and that it can exchange its position with anthe computations in the main text.
ordinary particle on the left nearest-neighboring site with
rate 8. By rescaling time, we can s@t=1 without loss of

generality. Then the above rules are represented as Il. EXACT STATIONARY STATE IN MATRIX PRODUCT

FORM
10—01 with rate 1, The stationary state of the process can be constructed by
applying the so-called matrix product ansatz. This technique
01—-10 with rateq, was first introduced ifi24] to study directed animals. It was
(1.)  then applied to the ASEP {i25]. Since then this method has
20—-02 with rate a, been successfully generalized and applied to many interest-
ing phenomena. See, for instance, the referenc¢&dh In
12—21 with rate . this section we explain the matrix product ansatz for our

procesg1.1) to fix our notations and definitions. We remark
that quadratic algebras for three-state models includint
*Electronic address: sasamoto@monet.phys.s.u-tokyo.ac.jp have been discussed in detail[it7,18,26. In the formalism

1063-651X/2000/6(6)/498011)/$15.00 PRE 61 4980 ©2000 The American Physical Society



PRE 61 ONE-DIMENSIONAL PARTIALLY ASYMMETRIC SIMPLE . .. 4981

of the matrix product ansatz, the stationary state of the proabove algebraic relation®.3) are exactly the same as those
cess(1.1) is constructed as follows. Let us denote the num-for the partially ASEP with open boundarig20,25.
ber of particles adN and the lattice length as+1. To be Step 5 Obviously, the construction of the stationary state
specific we explain the construction mainly by using an ex-above works for any choice df,N. Explicitly, the coeffi-
ample for the cask =2, N=1: the case where there is one cients P(7,,7,, ...,7) of the normalized stationary state
ordinary particle, one defect particle, and one empty site omre given by
the chain with three sites. For this example, the stationary
state can be written as a linear combination of the six con- 1
figurations 012, 021, 102, 120, 201, 210 and is completely P(71,72, ---aTL):Z_<W|H [7D+(1-7)E]V)
determined by specifying the corresponding six coefficients LN =l 2.4
P(012), P(021), P(102), P(120), P(201), P(210). Each '
coefficientP (7,75, 73) is the probability that the system is
in a configurationr, 7,7, with 7,=0,1,2(=1,2,3) for the
stationary state.

Step 1 To each configuration 0,1,2 at one site, we asso-

L

for the configurationr; 7, . . . 7, which satisfie§}'zlrj= N.
Here the normalization constant \ is

Ciate a matrixg, D, a_mdA, respgthely. T_he space on which Z = > <W|H [7,D+(1-7)E]V). (2.5
these matrices act is not specified at this stage, TV To e L j=1
0L E 3oy =N
Ad L)

14D 2.) The summation is over;=0,1 for j=1,2,... L with the
' ' condition EL 17j=N. Hence we have constructed the sta-
2 LA, tionary state in matrix product form.
In this paper, we will compute the current of the ordinary
Step 2 To each configuratior; 7,75 of the whole lattice ~ particles, the speed of the defect particle, and the density
we associate a matrix product_ For instance, the Conﬁgurd)rOf"e of the ordinary partiCIeS seen from the defect particle.
tion 120 is associated with the matrix produzAE. These quantities are written in terms of the matrices as fol-
Step 3 We construct a state, of which each coefficient islOWs.
given by the trace of the matrix product. For the present The current of the ordinary particles is given by
example, the six coefficientsP(012), PM(021),
P(W(102), P(W(120), P (201), P\(210) are given by J=Prol(7;=1,7j,1,=0)—qProl{7;=0,7j,,=1)
Tr(EDA), Tr(EAD), Tr(DEA), Tr(DAE), Tr(AED),

Tr(ADE), respectively. Here we denote the coefficients as +BProt 7=1,7,,=2)=(1-q)| — ZL-1N
PW(7,,7,,73) because the corresponding state is unnormal- +1 Z N
ized. The coefficients of the normalized st&er;, 75, 73) is L-NZ,_1n_1

obtained by simply dividing the unnormalized ones by the _ (2.6
normalization constant, L+l Zin

Z —3n—1=Tr(DEA)+ Tr(DAE)+ Tr(EDA) + Tr(EAD) The speed of the defect particle has a similar expression,

+Tr(ADE)+Tr(AED). (2.2 v=aProl(7j=2,7j.,=0)— B Prol(7j=1,7,,=2)
In the above prescription, there is a problem about the exis- ZL an—Zi-1N-1
tence of trace. We will see that we can take a special formof ~ =(1—-0q) 7N : 2.7

the matrixA which ensures the existence of the trace.

Step 4 We can show that the constructed state is th
stationary state of the process if the matriGeg, A satisfy
the conditions

®rhe average density of the ordinary particles at piseen
from the defect particle reads

-1

DE—gED=¢(D+E),

GED={(D+E) mith= 5wl [mora
ﬂDAngy (23) Tl+71’7—i‘;1+‘714’rf|_:k|*1
aAE="CA. -

-7)E]ID D+ (1-71)E]|V), (2.8
Here ¢ is an arbitrary number and is taken to bel—q WE] k=1;[+1[ D+ WEIV). 28
hereafter. In addition, we set=a/(1—q), B=pB/(1—-q).
The demonstration of the fact that the above algebraic reIaA/herer, indicates that it is omitted. This is an unnormalized
tions are sufficient conditions for the stationarity of the pro- quantlty The normalized density is given bfn;),
cess proceeds in almost the same manner as for the ASEF’(n]>L MZ N
[25] and therefore is omitted. As we will see at the end of the Here we note that the process has a particle-hole symme-
section, we can take a matrik of the form A=|V)(W|,  try which reduces our computations greatly. The process is
where|V) and(W| are some vectors. Then we notice that theinvariant when the particles and holes are interchanged, the
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direction of particle hoppings are reversed, andndg are  all numbers of particledl=0,1,2 ... L with equal weight.
exchanged at the same time. In other words, the process This fact allows us to compute the average and the variance

invariant under the change, of the density for the partially ASEP with open boundaries.
This is done in Appendix A.
particle—hole, Before closing the section, we give some notations, defi-
nitions, and an example of the representation of algebraic
a—p, (2.9 relations(2.3). First we introduce the-shifted factorial,
site numberj < site numberl. —j + 1. (a;q),=(1—a)(1—aq)(l—ag’)---(1—aq" ),
(2.14a9

Due to this symmetry, it is sufficient to obtain the density for

the right half of the system, when we look at the system by (a;0)o=1. (2.14b
setting the origin at the position of the defect particle. The

density for the left half of the system is obtained by using thewe also define

above symmetry as

(Mpun(a,B)=1—(n__ji) L -n(B@), (210 (a;Q)w:JHO (1-ad) (2.19
where the dependence @f;), on the parametera and 3 , . .
are explicitly indicated. for |g|<1. Since products ofj-shifted factorials appear so

So far, we have been considering the situation with &ften, we use the notations
fixed number of particles. In other words, our discussions . . . .
have been for the canonical ensemble. We are mainly inter- (81,82, -+ &)= (1;0)(82;0) 0" '(ak,Q)oc(é 18
ested in the physical quantities in the canonical ensemble. '
They can be directly compared with the results of the com- c) —(a @) (A -
puter simulations because they are usually done for fixed (818, - - @i D= (31:)n(32:Q)n (ak’q)”('z 17
particle numbers. However, it turns out that computations are '
much easier in the grand canonical ensemble. Since than example of the representation of the algeligad) is
meaning of the chemical potential is unclear for our modelgiven by
we define the grand canonical ensemble simply as a super-

position of canonical ensembles. Let us introduce the fugac- 1 J1—q 0 0
ity £€2 which is associated with the ordinary particles. Then —
the coefficient gl 71,72, . . . ,7) Of the normalized sta- D— 0 1 1-q 0
tionary state for the grand canonical ensemble is compactly 10 0 1 \/1—q3 '
represented as
L
Pecirivmz, ) =5 g W [méD : 2183
GCELTL: T2y - - T =7y (WL L) E=D', A=|V){W|,
+(1-7)E]V). (2.11) W= (al L2 a?
=Kcla| =K y y FEEIEEE
Here the normalization constan{ (&) is a summation of the ¢ V(g;a)1 V(g;0)2
coefficients of the unnormalized states. In matrix notation, (2.18b
this is simply written as 1
ZL(O=(WICH|V), (2.12 b
: V(a;a)
with |V)=k|b).=«k b2 ! ,
C=¢°D+E. (2.13

V(d:d);

We took the fugacity not ag but asé?. This is only for the
notational simplicity in the formulas in the subsequent sec-
tions. But this causes an ambiguityand — & gives the same Wwhere the superscript indicates the transposition. Notice
fugacity £2. In the following we sometimes give explanation that the special form of the matrik ensures the existence of
only for Re¢>0. But it is clear how the Ré<0 case should the trace. We introduced

be considered. One remark is in order. If we &etl in Eq.

(2.10, Pged 71,72, ...,7) gives exactly the stationary 1 1-q

state of the partially ASEP with ampen boundargondition a=—lt==-1+—r-, (219

in which there is particle inpuutpu) at the left(right) end

of the system with ratex (8) [20,25. In other words, the 1 1-

partially ASEP with open boundaries can be regarded as a b=—1+—=—1+ _q. (2.20
superposition of the present one-defect particle model with B B
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From now on, we restrict our attention to the case where while it excludes all poles of the typa ‘&g~ and

>0 andb>0, i.e., the case where<1—q andB<1—q. b ¢ 'q ¥ with k=0,1,2....Whenaé¢ <1 andbé<1
This is mainly for the simplicity of the discussions. We do hold, the contour is simply a unit circle ag (¢) reduces to
not expect another phase transition to appear if we considehe single integral on the real line. But wheg '>1 or
a<0 or b<0 case. The constam in (2.18b is taken as bé&>1 there appear other terms as well. In general, when
x?=(ab;q).. so that(W|V)=1. An important fact about

these matrices is that they are related to the so-calledaé '>aé lq>-.->a¢ g
g-orthogonal polynomial§27-29. It is this connection that

allows us to compute the physical quantities exactly in the b&é>bég>- - - >béq
subsequent sections. The relationship between the matrix

product ansatz for the partially ASEP and the theory of thevheren® andn(® are some non-negative integers, we have
g-orthogonal polynomials was first clarified j20] and has

been exploited to study the partially ASEP with open bound- 2 (&=2&+Z2P(H)+Z{(¢). (3.3
aries in[21,23.

n(a)> 1>a§*lqn(a)+l> -

n(®)

>1>béq" > ... (3.2

Explicit expressions for the above three terms read

Ill. CURRENT (g,ab;q).

)£y =
In this section we compute the current of the ordinaryZL (& 2
particles(2.6) and the speed of the defect parti¢®7) in the i 2ip. . oL
thermodynamic limit. We need to know the asymptotic ex- y dee(e e %% q).[(1+¢€”)(1+Ee )]
pression ofZ, \ whenL,N—oo with p=N/L fixed. 0 (a& e’ at te ' pbee'? bee%q)., '

(3.9

A. Exact formula for Z, (&)

First we give the exact expressionaf(¢) in the form of (@)

a contour integral. Since the derivation is almost the same asZ(La)(f)= (q,ab;q)mz Wj(a)[(1+aqi)(1+ Fa g hs,
that in[20], the proof is omitted. The result is =0

(3.9
. (g):(q,ab;q)wj gpEE S0+ (A ez D )
T A Je g zag e bezbiz ) 706 = (g,ab:0). 3, w1+ €)1+ T ],
(3.1 i=o 36
The contourC of the integral above is such that it includes '
all poles of the typea& 'g* and bégk with k=0,1,2...  with
|
YN o 1 G . Mt .5 1 @7
' (g,ab,a”'bé%q)..(q,ab ¢ %q;q);(1- ¢ %a%)g) alb)
BV ot 1 . el s 0 N @9
' (a.abab & %g)..(0,a *bE%q;q);(1- £%?) gl alb% ¢
|
Off course whena¢ <1 and/orbé<1, we should omit ) (£2072,0) ) L
Zz® and/orz® in Eq. (3.3. Zy (f)zm[(lﬂ% b)(1+b™%)]

The asymptotic behavior af{”)(¢) can be evaluated by ) 310
applying the steepest descent method, whereas the '
asymptotic behaviors on(La)(g) and z(Lb)(g) are simply 551 o when Ret>0.
given by thej =0 terms in the summation. We find

(q.ab:q) [(1+§)(1+§_1)]3,2 B. Asymptotic formula for Z
7O = "= — 7 (Lt &), In this section we study the asymptotic behavioZpfy .
2\m(ag L béa)iL First we notice
(3.9 )
(£a-2q). Zu(9)= 2 7, . (312
Z{(¢)= [(1+a)(1+&a ]y N

(@~ 'bé?q).
(3.10  The average density of particles is given by
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1 9 turns out that this is related to the fact that the density-
(p)=£%lim T 2. (3.13  fugacity relation(3.13 breaks down a£= \/a/b. Notice that
9€ Z{3(¢) andz{"P}(é) in Egs.(3.10 and(3.11) have a pole at
) this point. Physically, this is related to the existence of a
Basically we can expect that each value of the fugagfty shock. It might seem difficult to know the asymptotic behav-
corresponds to each value of the density. Then the densityy, of Z, \ for this case. But this is not the case. Let us
fugacity relation is invertible and the equivalence of the Caemploy Eq.(3.14) and take the contour as a ciraBy with
nonical and the grand canonical ensemble holds. For ouhe radiusR. As long asL is finite, we can change the radius
model, however, there appears a sitqation where the equivgy 55 we wish. To know the asymptotic behaviorZof,, we
lence of the ensembles fails. .For th|s case, we have t0 g@ant to use Eqs(3.9—(3.11) and apply the steepeét descent
back to Eq.(3.12 and use the inversion of it, method. It turns out that the saddle point associated with
Z@(g) [zM(8)] is at =&, (é=&,) and the contribution
. ziJ' Z.(§) (314 from Z9(¢) is smaller than the others. Hence, to apply the
N2 e, C Nt ' steepest descent method, we have to take the radius of the
contour as R;=¢&,(>+a/b) for z¥(¢) and as R,
whereC, is a contour that encircles the origin anticlockwise. = &,(< \/a/b) for Z(Lb)(g). At first let us takeR asR,. We
Notice that Eq.(3.14 is always true for a finitelL since  have
Z,(¢) is a polynomial of degreel®. This formula also has
an advantage that it allows us to obtain not only the exponent 1 dé (a 28%q). [(1+a)(1+&a bt

L—oo

of the asymptotic behavior &, \ but also the prefactor of 2L N= o Ca & (a~bé%q) N
it. 2 U

In order to find the relationship between the density and 1 d¢ (b72¢672%q).. [(1+&%b)(1+b 1]t
the fugacity and derive the asymptotic expressiorZpf, 27 )e. E (ab-le2. N .
we need to know, for a give value gf which term in Eq. Cr, & (@b "¢ 70). ¢

(3.9 gives the main contribution td (£). For notational (3.15
convenience we defing=p/(1—p).

Whena+B>1 (ab<1). We have the following three To apply the steepest descent method to the first term, we
cases. have to modifyCR2 to Cg,. Since the integrand of the first

(i) Case G<¢<a. The main contribution &, (£) comes  term has a pole aya/b, there appears a contribution from
from Z{®. The density-fugacity relatior3.13 gives &  the pole when the contour is modified. More explicitly, we
=\aéy(=¢&,). In order for this value to be in the region O see
<é<a, the densityp should satisfyp<1l—a<p. The s L
asymptotic behavior aZ(?}, can be obtained by applying the 1 dé (a 7¢%5q). [(1+a)(1+&7a )]

steepest descent method. 2miJcg € (a'béq). &N

(i) Casea<é<b™!. The main contribution taZ, (&) '
comes fromz{®). The density-fugacity relatiof8.13 gives 1 dé (a™28%0). [(1+a)(1+&a ]t
E=¢p. In order for this value to be in the regioa<¢ Tom CR?(a_leZ;q)m N
<b~!, the densityp should satisfy +a<p<pB. The ’
asymptotic behavior aZ("} can be obtained by applying the (@b ha)L(1+a)(1+bTht 31
steepest descent method. (q;q).(ab™HN ' (3.19

(iii) Caseé>b~ 1. The main contribution t&@, (£) comes
from Z{®. The density-fugacity relatior3.13 gives ¢  Now we can apply the steepest descent method to the two
=& /b(=&p). In order for this value to be in the region integrals. But it turns out that the contribution from the pole
&>b~1, the densityp should satisfy +a<pB<p. The gives the asymptotic behavior @ \ for this case.
asymptotic behavior Qz(L(Rl can be obtained by applying the ~ Combining the above results, we see that there are four

steepest descent method. regions in thea-B plane, in each of which the asymptotic
Whena+B<1 (ab>1). We have the following three behavior ofZ y in the thermodynamic limit has a different
cases. form. We refer to these four phases as phasB, C, andD.

(i) Case O<¢<y/a/b. The main contribution taz, (¢§)  The asymptotic expression &f y in each phase is given by
comes fromz{® . The density-fugacity relatio8.13 gives the following. B
£=¢,. In order for this value to be in the region<®¥ Phase Aa<1l-p,B>p
<\/al/b, the densityp should satisfyp<B<1-—a. L
(i) Case&> \/a/b. The main contribution t@, (¢) comes 7 (&) _ (@ &0 )
from z{". The density-fugacity relation3.13 gives ¢ TN (Do)
= ¢, . In order for this value to be in the regign-\/a/b, the
densityp should satisfyB<1—a<p. X — = .
(iii)ygasegz Ja/b. fsyg far we hffve not seen the values of Vamat N1 —a)NpN TR 1 p)tmNFL2
the fugacity that correspond to the regigcp<1—a. It (3.17)

1
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Phase Ba>1-p,B<p

i (B 0"

7 =
T @g o)
1
X\/ZEN(1—23)'—‘NpN+1/2(1_p)L—N+1/2'
(3.19

Phase Ca>1-p,B>p

Z, =270 aB(a+p+1)(d,abgq).

N G = D)2(B—p)?(&, ‘a0, &b )2
% : (319
2mL2pPMN(1—p)2t— 2N '

Phase D a<1-p,B<p

_(1-a—p)(a b *q;q).

Y 1-2a-B@a).

1
(=z{%. 320

at N1-a) BN -B)

These are simple generalization of the resultglf| for the
totally asymmetric case.

C. J and v in the thermodynamic limit

Now it is straight forward to calculate the current of the

ordinary particles) and the speed of the defect partiolén

ONE-DIMENSIONAL PARTIALLY ASYMMETRIC SIMPLE . ..
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-1
<nj>(|_U)(§)= 2 <V|k1:[1 [Tj§2D+(1_Tj)E]
T1oT20 o T T =

L

ngDkH ) [7,62D+(1-7)E]V). (4.2
:J+

To translate the results in the grand canonical ensemble into
those in the canonical ensemble, we need the formula

(u)
1 f ROGY wr

§2N+1

Now we explain the main idea how to compute
(nj>(L“)(§). Details of the computation are not presented here
since they are similar to those [21]. Since it is easier to
calculate the density difference than the density itself, we
rewrite the density at sitpas

L—-1
<nj>L=kE:j (&) = (N D))+ ()M (&).
(4.3
At the right boundary, we have
§2
<nL>£“><§>=§<W|CL*1IV>. (4.4

A similar formula can be found for the left boundary as well.
As for the computation ofn, )" (&) — (i, 1) (£), we no-
tice that

(N(E) = (s )18 = E(W|CHIDCH V)
—(W|Cc'DC K V)
=(w|c{(DC
—CD)C- K 1|v)
=¢£X(W|C* X(DE

the thermodynamic limit. The results are summarized as fol-

lows:
Phase AJ=(1—q)p(1—p) andv=(1—q)(a—p).
Phase BJ=(1—0q)p(1—p) andv=(1—q)(1—B—p).
Phase CJ=(1—-q)p(1—p) andv=(1—q)(1—2p).
Phase D J=(1-q)[p(a—B)+B(1—a)] and v=(1
—a)(a—pB).

IV. DENSITY PROFILE

Now we turn to consider the average density profile. As in
the preceding section, we first calculate the density in the

—ED)C- % Yv). (4.5

By using the two facts thaDE—ED is a simple diagonal
matrix and that the resultant series can be summed up by
using a formula for the-Hermite polynomials, it turns out to

be possible to derive an integral expression(nf){"(¢)

— (N )W(&). If we sum up these terms from=] to k

=L -1, after some computation, we get

L-1

kzj<<nk>£”>(§)—<nk+1>£“><§>>=I1+I2, (4.6

grand canonical ensemble. In the grand canonical ensemble,

the (unnormalizegl average density at sijeis defined by

where
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dz, f dz,
27Ti21 2’7T|22

(23,2,%,25,2,%;Q) [ (14 E29) (1 + €2, DL

-1 -1,-1 -1_-1 -1 -1_-1 —-1. -1 -1\’
(a¢ "zy,aé "z, 7,0212,,92; "z, *,921Z, ~,qZ; "z, ,bézy,béz, Q) (2012, — 21— 273

_§ . . 3f leJ dz,

I1=§(ab;q)w(q;q)ij

(4.7)

y (24,212,252, %) [ (1+ €20) (1+ €20 D] (1 + é2p) (1 + é2, D]
(a¢ 'z,8¢ 7120 1,0212,,92 12, 1,212, 1,07 7, 1 bEz béZy i) (2t 2 -z -2 )

When O<a¢ !,bé<1, the contours of, andz, are both  with the correlation length
unit circles. For other values of the parameters, the contours ~ _
are modified so that the analyticity bf andl, are ensured. o a(l—p) (1-a)p
Combining the results fo(n;){")(£) with the formula r==In 13 + z
(4.2), we obtain the density profile of the ordinary particles
in the canonical ensemble. The density at the right boundary PhaseA,. This phase corresponds to
is computed by using Ed4.4). The integrall ; gives us the
density at bulk region, which turns out to peexcept for the (1-p)g® ~ \/(1—5);)
phaseD. Of course this is consistent with the fact that we are —<a<1—p, B>
now dealing with the system with the fixed densijty The p+(1—p)g? \/3(1_p)+ \/(1_5)p
integral I, contains the information about how the density (4.13
decays near the right boundary. The density near the left o
boundary can be found by noticing the symméfy10. The in the a-B plane and to
results are summarized in the following. .
Phase A(a<1—p andB>p; a>§&, andb<1/&,). The fo<a<éon ?, b<lhag (4.14
average density in the bulk region takes the constant yalue
The densities at boundaries are given by

. (4.12

in thea-b plane. The density profile near the right boundary
decays exponentially as

1-a VEo(1+aég)(ab,béy;q).(q;a)%  exd —1/r]
N =p, (N =—=—0p. (4.8 N =p—
< 1>L p < L>L B P <nJ>L P 2\/5(\/agalq,\/ail§o,b\/a_§o;Q)i |3/2
(4.15

Notice that the density near the left boundary does not

change and takes the constant vajueComputation of the With the correlation length

density near the right boundary shows that the phasab- - -

divides into three phases. 1= —2In[Va(l—p)+V(1-a)p]. (4.16
PhaseA;. This phase corresponds to

The decay of the density is not purely exponential but with

= algebraic corrections.
B p Be V(1-a)p PhaseA;. This phase corresponds to
p+(1=p)q \/?v(l—p)+\/(1—5)p ~ (1-pg® - p
4.9 a<———— B>———— (417
p+(1-p)q p+(1-p)q
in the a-4 plane and to in the a-B plane and to
a/éo<b<<1/§y, b>1/yag, (4.10 a>£,q72, b<qé&y?t (4189

in the a-b plane. Let us denote the distance from the rightin the a-b plane. The density profile near the right boundary
boundary as=L—j+1 from now on. Then the density near decays exponentially as
the right boundary decays exponentially as

&o(1—ab)(1-a *¢g7?)
26 —Ap—2¢— 1. n) =p— exd —1/r
(ab*¢,—1)(0,a" b %, *q;0).. (npL=p (= beaq D1+ aq)(1+ £ ) H—1/r]

(1+ab&)(1+b)(@ b 1g,b ¢, ';0)- (4.19
xXexg —1/r] (4.1  with the correlation length

(NpL=p—
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-1 a ~ pg? ~ 1-p
r = —_—

In— = . 4.2 , -
e apa 20 P oo CToptea

PhaseB (a>1-p and B<p; a<é&, andb>1/&). This  in the a-B plane and to
phase is symmetric to the phage All results can be ob-
tained by using the symmeti2.9). The average density in b>£5'q7% a<éq (4.29
the bulk region takes the constant valgeand does not ) ]
change near the right boundary. The densities at boundariéd the a-b plane. The density profile near the left boundary

(4.28

are given by decays exponentially with the correlation length
~ L q
1-8 r—-=In—= = . (4.30
<nl>L:1_T(1_P)v (n)L=p. (4.21) [B+(1-B)al[1-p+pq]

PhaseC (1— a<p<p; a<é, andb< ¢, ). The average
density in the bulk region takes the constant vatueThe
densities at boundaries are given by

PhaseB;. This phase corresponds to

1p - V(1-B)(1-p) . ,
,
1=p+pa VBp+ N (1-B)(1-p) <n1>L=1_§(1_P)2, <nL>L=%- (4.39

(4.22

l—p<Zy<

in the &% plane and to The average density decays near the right boundary as

p(l—p) 1
§ogq<a<éy, b>§—2 (4.23 (MpL=p=\V— |12 (4.32
a

- ) : The density decays algebraically and hence the correlation
in thea-b plane. The density near the left boundary decayﬁength is infinite. The density decay at the left boundary can

exponentially with the correlation length be obtained from the symmetry relatig@®.10. This is the
Bp  (1-B)(1—p) same as the result for theeg=0 case in15].
-1_ ~ ~ —-1 .
ro=—In—=+ = : (4.24 PhaseD (a<1—p andB<p; a>¢&, andb>£;1). In this
phase, there is a shock. Hence the average density at bulk
region is not a constant. For the densities at the boundaries,
we have

1-«a o
PhaseB,. This phase corresponds to

pg? - V(1-B)(1-p)

<a<l-p, a>

L-ptpa? VBor Va-B1-p)

(n) =B, () =1-a. (4.33

There are two regions in the system. One is the low density

(429 region with the density at left side and the other is the high
in the -8 plane and to density region with the density-1« at right side. The two
regions are separated by a sharp interface, which we call a
. 1 &o shock. WhernL is large, the average density profile is de-
o <b<{o7q %, a<b<; (4.26 scribed by a continuous functiom(x) in terms of the res-

caled variablex=j/L (0<x<1). The derivative ofi(x) is

in the a-b plane. The density profile near the left boundaryfound to be
decays exponentially with the correlation length

dn(x)
rl= =21 VBp+ V(1-B)(1-p)].  (4.27) ax - CexdLF(X)], (4.34
PhaseB3. This phase corresponds to where
FOO=xIn{(1+a)[1+a *G(x) ]} +(1-x)In{[1+bG(x)](1+b~ )}, (4.353

—x+p—ab(l—x—p)+ [ (x—p)>+ab(l—x—p)]>+4abp(1—p)

G)= 2b(1—p)

(4.35h
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/é O . V. CONCLUDING REMARKS

In this paper, we have considered the partially asymmetric
\ . simple exclusion process on a ring with one defect particle.
L As| We have computed the current of the ordinary particles, the
. speed of the defect particle, and the density profile of the
. A2 C ordinary particles seen from the defect particle. The main
e \‘: result of this paper is the identification of the phase diagram
: h k for the correlation length shown in Fig. 1. It turns out that the
| A phase diagram has a richer structure than that for the totally
A asymmetric case.
’ T There are several possible applications and generaliza-
; tions of the analysis in this paper. First there are several
models for which the partially asymmetric case has not been
solved. For instance, we can generalize the analy$@8|ifor
the totally asymmetric case to the partially asymmetric case.
Second, we did not study the case whgeel in this paper
since our main interest was the phase structure of the model
and it is obvious that there is a phase transitiogatl. But
it would be interesting to apply the similar analysis to this
case and compute the physical quantities exactly. In addition,

FIG. 1. Phase diagram for the current and the correlation lengthif we consider the limig— 1 carefully, the crossover behav-
The phase boundaries for the current are represented by the thi¢Rr should be observed since this limit is associated with the
solid lines; those for the correlation length are represented by thehange of the universality of the model from KPZ universal-
thin solid lines. The dotted lines are not the phase boundaries. Thefy class to EW universality clagd4]. Here we only remark
are drawn for convenience. that the corresponding ASEP with open boundaries have

been considered if22] for theq=1 case and ifi23] for the
The constan€ in Eq. (4.34 is determined by the normaliza- g>1 case. Lastly, it WOU!d be'also interesting to generalize
tion condition, our analysis to the multispecies modé¢ls7,18,26,30—3}
Compared to the ASEP, much less is known about these
models. Several investigations are now in progté&. The

1dn(x) ~ ~ results about these will be reported elsewhere.
f o =1-a-B. (4.36)

2
1-p+pq?

_______________________________________

(1-p)g? 1-p
-0 L=p T—p+rg

Qv
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dn(x) L o APPENDIX A: DENSITY FLUCTUATION FOR THE
d = == = (1—a—,8)2 PARTIALLY ASEP WITH OPEN BOUNDARIES
X 2mp(a=B)+B(l-a)] _ , o ,
. In the main text of this paper, we are mainly interested in
L(1—a—B)2(x—X%g)? the system with a fixed number of particles. The physical
Xexp — 2[p(3—,~8)+,7:.’(1—2v)] : (4.37) quantities are computed for a given value of the dengity

When we consider the ASEP with open boundaries, how-
ever, the situation becomes different. The system is con-
This is essentially the same expression as that for the totallpected to particle reservoirs at boundaries; the total number
asymmetric cas¢15]. But it should be remarked that Eq. of particles can fluctuate. As pointed out in the main text, the
(4.37) is only a consequence of the above approximation; thétationary state of the partially ASEP with open boundaries
correct formula is given by Eq4.34) with Eqs.(4.353 and  is obtained by setting=1 in Eq. (2.11). Moreover, the
(4.35h. probability that the partially ASEP with open boundaries has
We thus obtain the phase diagram shown in Fig. 1. As wé\ particles is given byZ, y/Z (¢=1). By using the
have seen, phask (B) for the current subdivides into three asymptotic expressions c, (é=1) in [20] and those of
phasesA;, A,, andA; (B, B,, andBs). This phase dia- Z{"\ with f=0,a,b,d in Egs.(3.19—(3.20, it is possible to
gram has a richer structure than that for the totally asymmetebtain the asymptotic behavior of the probability measure of
ric casg[15] for which phaseA (B) for the current subdivides the particle density wheh—co. In particular, we can com-
into only two phases and phastgandB; are not observed. pute the average and the variance of the density for the par-
The situation is analogous to that for the ASEP with opertially ASEP with open boundaries. In this appendix we do
boundarieg20,21]. not explain even the basic properties of the model and use
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some terminologies without definition. SE#0,21,25,36—-3B
for instance.

First we study how the asymptotic expressionZpfy in
Egs. (3.17—(3.20 looks like as a function of &p<1. As

—a and p<B. As L goes to infinity, however, the main
contribution comes fronz{®), in this phase.
The average and the variance of the density are found to

an example we considé(®),. Let us rewrite Eq(3.17) as be
- (p)=1-B (A8)
(@ 'é0;0)-
= exfLS(p)], (A1)
" N2mp(1=p)(b&o;q)- -
i (o (o= PEE) (A9)
with
S(p)=— IN[a* P(1-2)p?(1-p)~].  (A2) Maximal current phas€a>3%,3>%). For small densities

that satisfyp>1— @, we havez, =2 ; for large densi-

Then it is easy to see ties that satisfyp>p3, we havez_y=2{"}. In the middle

JS w(1—p) region of densities that satisfy-1a< p<p, the asymptotic
5= Inf ——— (A3)  behavior ofZ_\ is determined b)Z(,_? As L goes to infin-
P (1=-a)p ity, the main contribution comes from(o) in this phase.
~ . The average and the variance of the density are found to
becomes zero gi= «. In addition, we have be
S _ ! <0 (A4) 1
PP E I (o) =5, (AL0)

for 0<p<1. HenceZ(,_a’L takes a single maximum value at

N=aL. If we expandS(p) aroundp=a and substitute it ((p— <p>)2>~— (A11)
into Eq. (A1), we find

1 L L(p— )2 This formula agrees with the one derived [i88] for the
~—~l ex;{ — ~p—~ , (A5) special casg=0,a=8=1.
a(l-a) 2a(1-a) Coexistence Iineé?y=73<%). For small densities that sat-
: -~ __—(a) . e _
when p~. The width of the peak if of ordet ~¥2 As L isfy p<a, we haveZ n= ZL ;s for large densities that sat

goes to infinity, we expect that the probability measure of thdsfy p>1— @, we havez, N~Z(b) . In the middle region of
density is given by a Dirac measudg . Similarly Z{") takes ~ densities that satisfy<p<1-—a, the asymptotic behavior
a maximum value ap=1—8; Z(,_(?,)“ takes a maximum value of Z_  is determined b)Z(Ldg\, When we sela=3 in Eq.
at p=1/2. Now we explain the asymptotic behavior of the (3.20, we notice thaz{®}, does not depend op. This im-
probability measure of the density and compute the averagglies that the probability measure of the density does not
and the variance of the density. have a peak. In fact the probability measwép)dp in the
Low density phaséa< ,3>a). From the results in the thermodynamic limit is
main text, we see the following. For small densities that
satisfy p<1—a and p<3, the asymptotic behavior af 1
(a) —=, a<p<1 a
is determined byZ;°\ . For larger values op, we have w(p)={ 1-2«a (A12)
Z, n=2{°) when 1- a<p<23 andZ, \=Z2{" whenp>1
—a. As L goes to infinity, however, the main contribution
comes fromZ N in this phase. Hence we obtain
By using Eq (A5) we compute the average and the vari-

0, otherwise.

ance of the density to get 1
~ (P)=3 (A13)
(p)=a, (A6)
- (1-2a)?
((p— <p>)2>~(—a) (A7) ((p=<(p)) 2>~— (A14)
The variance of the density goes to zeroLas ». Notice that the variance of the density is finite for this

. . ~ 1~ o case. This is related to the fact that we see a shock on the

High den3|ty phas¢s=z,a>p). For large densities that coexistence line. The position of the shock can be anywhere
satisfy p>1—a andp>p, the asymptotic behavior &_n  [11,36,39. This leads to a macroscopic change of the total
is determined byZ{?\,. For smaller values of, we have number of particles or the finite value of the variance of the
Z, n=2Z{% when 1-a<p<B andZ_ \=Z{* whenp<1  density.
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