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One-dimensional partially asymmetric simple exclusion process on a ring with a defect particle

Tomohiro Sasamoto*
Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japa

~Received 29 October 1999!

The effect of a moving defect particle for the one-dimensional partially asymmetric simple exclusion process
on a ring is considered. The current of the ordinary particles, the speed of the defect particle, and the density
profile of the ordinary particles are calculated exactly. The phase diagram for the correlation length is identi-
fied. As a by-product, the average and the variance of the particle density of the one-dimensional partially
asymmetric simple exclusion process with open boundaries are also computed.

PACS number~s!: 02.50.Ey
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I. INTRODUCTION

Recently, the one-dimensional asymmetric simple exc
sion process~ASEP! has attracted much attention in vario
fields of science including mathematics, physics, and biol
@1–4#. There are several reasons for this. First of all,
ASEP has a lot of applications to realistic systems. For
stance, the ASEP can be considered as the simplest mod
traffic flow @5–7#. It is also used to study the dynamics
interface@8#. There are other applications as well. Seco
the ASEP shows rich nonequilibrium behaviors such as
shock wave@9–11#, boundary-induced phase transition@12#,
and the unusual dynamical scaling@13,14#. Since there is no
established framework for far-from equilibrium systems, t
ASEP has played an important role in nonequilibrium sta
tical physics. Third, some properties of the ASEP can
studied exactly by the Bethe ansatz or the so-called ma
product ansatz. Since the effects of fluctuations beco
strong in low dimensions, mean-field analysis sometim
fails to give correct answers. Exact solutions give us an
sight how to understand the problems that cannot be so
exactly.

The ASEP is a one-dimensional lattice gas model. E
particle tends to hop to the right with ratep and to the left
with rate q. In addition, they interact with one anothe
through hard-core exclusion interaction. In this paper
consider the stationary state of the ASEP on a ring with
defect particle. We sometimes refer to the particles as o
nary particles to distinguish them from the defect partic
We assume that the defect particle tends to hop to the r
with rate a and that it can exchange its position with a
ordinary particle on the left nearest-neighboring site w
rate b. By rescaling time, we can setp51 without loss of
generality. Then the above rules are represented as

10→01 with rate 1,

01→10 with rate q,
~1.1!

20→02 with rate a,

12→21 with rate b.
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Here 0, 1, and 2 denote an empty site, an ordinary parti
and the defect particle, respectively. Several exact res
have already been obtained for theq50 case@15,16#. This
case is referred to as the ‘‘totally asymmetric’’ case in t
following. The current of ordinary particles, the speed of t
defect particle, the correlation length, and the current fl
tuation have been computed exactly for this special ca
Much less is known for the ‘‘partially asymmetric’’ cas
whereq is not necessarily zero although some exact res
were obtained in@17–19#. In this paper, the model is studie
for the 0,q,1 case. We compute the current of the ord
nary particles, the speed of the defect particle, and the d
sity profile of the ordinary particles seen from the defe
particle. We exploit the connection of the present mode
the partially ASEP with open boundaries, which was recen
solved by using the theory of theq-orthogonal polynomials
@20,21#. We do not consider theq>1 case, in which the
current becomes zero in the thermodynamic limit. We
mark that, for the partially ASEP with open boundaries, t
q51 case and theq.1 case were studied in@22# and @23#,
respectively.

The paper is organized as follows. In Sec. II, the statio
ary state of the process is constructed by the so-called m
product ansatz. The current of the ordinary particles and
speed of the defect particle are calculated in Sec. III. In S
IV the average density profile is computed. The phase d
gram for the correlation length is identified. The concludi
remarks are given in Sec. V. In Appendix A we compute t
average and the variance of the particle density for the p
tially ASEP with open boundaries. This is a by-product
the computations in the main text.

II. EXACT STATIONARY STATE IN MATRIX PRODUCT
FORM

The stationary state of the process can be constructe
applying the so-called matrix product ansatz. This techniq
was first introduced in@24# to study directed animals. It wa
then applied to the ASEP in@25#. Since then this method ha
been successfully generalized and applied to many inter
ing phenomena. See, for instance, the references in@20#. In
this section we explain the matrix product ansatz for o
process~1.1! to fix our notations and definitions. We rema
that quadratic algebras for three-state models including~1.1!
have been discussed in detail in@17,18,26#. In the formalism
4980 ©2000 The American Physical Society
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of the matrix product ansatz, the stationary state of the p
cess~1.1! is constructed as follows. Let us denote the nu
ber of particles asN and the lattice length asL11. To be
specific we explain the construction mainly by using an
ample for the caseL52, N51: the case where there is on
ordinary particle, one defect particle, and one empty site
the chain with three sites. For this example, the station
state can be written as a linear combination of the six c
figurations 012, 021, 102, 120, 201, 210 and is comple
determined by specifying the corresponding six coefficie
P(012), P(021), P(102), P(120), P(201), P(210). Each
coefficientP(t1 ,t2 ,t3) is the probability that the system i
in a configurationt1t2t2 with t j50,1,2(j 51,2,3) for the
stationary state.

Step 1. To each configuration 0,1,2 at one site, we as
ciate a matrixE, D, andA, respectively. The space on whic
these matrices act is not specified at this stage,

0↔E,

1↔D, ~2.1!

2↔A.

Step 2. To each configurationt1t2t3 of the whole lattice
we associate a matrix product. For instance, the config
tion 120 is associated with the matrix productDAE.

Step 3. We construct a state, of which each coefficient
given by the trace of the matrix product. For the pres
example, the six coefficientsP(u)(012), P(u)(021),
P(u)(102), P(u)(120), P(u)(201), P(u)(210) are given by
Tr(EDA), Tr(EAD), Tr(DEA), Tr(DAE), Tr(AED),
Tr(ADE), respectively. Here we denote the coefficients
P(u)(t1 ,t2 ,t3) because the corresponding state is unnorm
ized. The coefficients of the normalized stateP(t1 ,t2 ,t3) is
obtained by simply dividing the unnormalized ones by t
normalization constant,

ZL53,N515Tr~DEA!1Tr~DAE!1Tr~EDA!1Tr~EAD!

1Tr~ADE!1Tr~AED!. ~2.2!

In the above prescription, there is a problem about the e
tence of trace. We will see that we can take a special form
the matrixA which ensures the existence of the trace.

Step 4. We can show that the constructed state is
stationary state of the process if the matricesD,E,A satisfy
the conditions

DE2qED5z~D1E!,

bDA5zA, ~2.3!

aAE5zA.

Here z is an arbitrary number and is taken to bez512q

hereafter. In addition, we setã5a/(12q), b̃5b/(12q).
The demonstration of the fact that the above algebraic r
tions are sufficient conditions for the stationarity of the p
cess proceeds in almost the same manner as for the A
@25# and therefore is omitted. As we will see at the end of
section, we can take a matrixA of the form A5uV&^Wu,
whereuV& and^Wu are some vectors. Then we notice that t
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above algebraic relations~2.3! are exactly the same as thos
for the partially ASEP with open boundaries@20,25#.

Step 5. Obviously, the construction of the stationary sta
above works for any choice ofL,N. Explicitly, the coeffi-
cients P(t1 ,t2 , . . . ,tL) of the normalized stationary stat
are given by

P~t1 ,t2 , . . . ,tL!5
1

ZL,N
^Wu)

j 51

L

@t jD1~12t j !E#uV&

~2.4!

for the configurationt1t2 . . . tL which satisfies( j 51
L t j5N.

Here the normalization constantZL,N is

ZL,N5 (
t1 ,t2 , . . . ,tL

( j 51
L t j 5N

^Wu)
j 51

L

@t jD1~12t j !E#uV&. ~2.5!

The summation is overt j50,1 for j 51,2, . . . ,L with the
condition ( j 51

L t j5N. Hence we have constructed the st
tionary state in matrix product form.

In this paper, we will compute the current of the ordina
particles, the speed of the defect particle, and the den
profile of the ordinary particles seen from the defect partic
These quantities are written in terms of the matrices as
lows.

The current of the ordinary particles is given by

J5Prob~t j51,t j 1150!2q Prob~t j50,t j 1151!

1b Prob~t j51,t j 1152!5~12q!F N

L11

ZL21,N

ZL,N

2
L2N

L11

ZL21,N21

ZL,N
G . ~2.6!

The speed of the defect particle has a similar expression

v5a Prob~t j52,t j 1150!2b Prob~t j51,t j 1152!

5~12q!
ZL21,N2ZL21,N21

ZL,N
. ~2.7!

The average density of the ordinary particles at sitej seen
from the defect particle reads

^nj&L,N
(u) 5 (

t1 ,t2 , . . . ,t̂ j ,•••,tL

t11•••1 t̂ j 1•••1tL5N21

^Wu)
k51

j 21

@tkD1~1

2tk!E#D )
k5 j 11

L

@tkD1~12tk!E#uV&, ~2.8!

wheret̂ j indicates that it is omitted. This is an unnormalize
quantity. The normalized density is given bŷnj&L,N

5^nj&L,N
(u) /ZL,N .

Here we note that the process has a particle-hole sym
try which reduces our computations greatly. The proces
invariant when the particles and holes are interchanged,
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direction of particle hoppings are reversed, anda andb are
exchanged at the same time. In other words, the proce
invariant under the change,

particle↔hole,

a↔b, ~2.9!

site numberj↔site numberL2 j 11.

Due to this symmetry, it is sufficient to obtain the density f
the right half of the system, when we look at the system
setting the origin at the position of the defect particle. T
density for the left half of the system is obtained by using
above symmetry as

^nj&L,N~a,b!512^nL2 j 11&L,L2N~b,a!, ~2.10!

where the dependence of^nj&L on the parametersa and b
are explicitly indicated.

So far, we have been considering the situation with
fixed number of particles. In other words, our discussio
have been for the canonical ensemble. We are mainly in
ested in the physical quantities in the canonical ensem
They can be directly compared with the results of the co
puter simulations because they are usually done for fi
particle numbers. However, it turns out that computations
much easier in the grand canonical ensemble. Since
meaning of the chemical potential is unclear for our mod
we define the grand canonical ensemble simply as a su
position of canonical ensembles. Let us introduce the fug
ity j2 which is associated with the ordinary particles. Th
the coefficientsPGCE(t1 ,t2 , . . . ,tL) of the normalized sta-
tionary state for the grand canonical ensemble is compa
represented as

PGCE~t1 ,t2 , . . . ,tL!5
1

ZL~j!
^Wu)

j 51

L

@t jj
2D

1~12t j !E#uV&. ~2.11!

Here the normalization constantZL(j) is a summation of the
coefficients of the unnormalized states. In matrix notati
this is simply written as

ZL~j!5^WuCLuV&, ~2.12!

with

C5j2D1E. ~2.13!

We took the fugacity not asj but asj2. This is only for the
notational simplicity in the formulas in the subsequent s
tions. But this causes an ambiguity;j and2j gives the same
fugacityj2. In the following we sometimes give explanatio
only for Rej.0. But it is clear how the Rej,0 case should
be considered. One remark is in order. If we setj51 in Eq.
~2.11!, PGCE(t1 ,t2 , . . . ,tL) gives exactly the stationar
state of the partially ASEP with anopen boundarycondition
in which there is particle input~output! at the left~right! end
of the system with ratea (b) @20,25#. In other words, the
partially ASEP with open boundaries can be regarded a
superposition of the present one-defect particle model w
is
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all numbers of particlesN50,1,2, . . . ,L with equal weight.
This fact allows us to compute the average and the varia
of the density for the partially ASEP with open boundarie
This is done in Appendix A.

Before closing the section, we give some notations, d
nitions, and an example of the representation of algeb
relations~2.3!. First we introduce theq-shifted factorial,

~a;q!n5~12a!~12aq!~12aq2!•••~12aqn21!,
~2.14a!

~a;q!051. ~2.14b!

We also define

~a;q!`5)
j 50

`

~12aqj ! ~2.15!

for uqu,1. Since products ofq-shifted factorials appear s
often, we use the notations

~a1 ,a2 , . . . ,ak ;q!`5~a1 ;q!`~a2 ;q!`•••~ak ;q!` ,
~2.16!

~a1 ,a2 , . . . ,ak ;q!n5~a1 ;q!n~a2 ;q!n•••~ak ;q!n .
~2.17!

An example of the representation of the algebra~2.3! is
given by

D5F 1 A12q 0 0 •••

0 1 A12q2 0

0 0 1 A12q3

A � �

G ,

~2.18a!
E5DT, A5uV&^Wu,

^Wu5kc^au5kS 1,
a

A~q;q!1

,
a2

A~q;q!2

, . . . D ,

~2.18b!

uV&5kub&c5kS 1

b

A~q;q!1

b2

A~q;q!2

A

D ,

where the superscriptT indicates the transposition. Notic
that the special form of the matrixA ensures the existence o
the trace. We introduced

a5211
1

ã
5211

12q

a
, ~2.19!

b5211
1

b̃
5211

12q

b
. ~2.20!
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From now on, we restrict our attention to the case whera
.0 andb.0, i.e., the case wherea,12q and b,12q.
This is mainly for the simplicity of the discussions. We d
not expect another phase transition to appear if we cons
a,0 or b,0 case. The constantk in ~2.18b! is taken as
k25(ab;q)` so that ^WuV&51. An important fact about
these matrices is that they are related to the so-ca
q-orthogonal polynomials@27–29#. It is this connection that
allows us to compute the physical quantities exactly in
subsequent sections. The relationship between the m
product ansatz for the partially ASEP and the theory of
q-orthogonal polynomials was first clarified in@20# and has
been exploited to study the partially ASEP with open bou
aries in@21,23#.

III. CURRENT

In this section we compute the current of the ordina
particles~2.6! and the speed of the defect particle~2.7! in the
thermodynamic limit. We need to know the asymptotic e
pression ofZL,N whenL,N→` with r5N/L fixed.

A. Exact formula for ZL„j…

First we give the exact expression ofZL(j) in the form of
a contour integral. Since the derivation is almost the sam
that in @20#, the proof is omitted. The result is

ZL~j!5
~q,ab;q!`

4p i E
C
dz

~z2,z22;q!`@~11jz!~11jz21!#L

~aj21z,aj21z21,bjz,bjz21;q!`

.

~3.1!

The contourC of the integral above is such that it include
all poles of the typeaj21qk and bjqk with k50,1,2, . . .
t

er

d
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e
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-

as

while it excludes all poles of the typea21jq2k and
b21j21q2k with k50,1,2, . . . . When aj21,1 andbj,1
hold, the contour is simply a unit circle andZL(j) reduces to
the single integral on the real line. But whenaj21.1 or
bj.1 there appear other terms as well. In general, whe

aj21.aj21q.•••.aj21qn(a)
.1.aj21qn(a)11.•••,

bj.bjq.•••.bjqn(b)
.1.bjqn(b)11.•••, ~3.2!

wheren(a) andn(b) are some non-negative integers, we ha

ZL~j!5ZL
(0)~j!1ZL

(a)~j!1ZL
(b)~j!. ~3.3!

Explicit expressions for the above three terms read

ZL
(0)~j!5

~q,ab;q!`

2p

3E
0

p

du
~e2iu,e22iu;q!`@~11jeiu!~11je2 iu!#L

~aj21eiu,aj21e2 iu,bjeiu,bje2 iu;q!`

,

~3.4!

ZL
(a)~j!5~q,ab;q!`(

j 50

n(a)

wj
(a)@~11aqj !~11j2a21q2 j !#L,

~3.5!

ZL
(b)~j!5~q,ab;q!`(

j 50

n(b)

wj
(b)@~11j2bqj !~11b21q2 j !#L,

~3.6!

with
wj
(a)5

~a22j2;q!`~a2j22,ab;q! j~12j22a2q2 j !j2 j

~q,ab,a21bj2;q!`~q,ab21j22q;q! j~12j22a2!qj 2
a3 jbj

, ~3.7!

wj
(b)5

~b22j22;q!`~b2j2,ab;q! j~12j2b2q2 j !

~q,ab,ab21j22;q!`~q,a21bj2q;q! j~12j2b2!qj 2
ajb3 jj2 j

. ~3.8!
Off course whenaj21,1 and/orbj,1, we should omit
ZL

(a) and/orZL
(b) in Eq. ~3.3!.

The asymptotic behavior ofZL
(0)(j) can be evaluated by

applying the steepest descent method, whereas
asymptotic behaviors ofZL

(a)(j) and ZL
(b)(j) are simply

given by thej 50 terms in the summation. We find

ZL
(0)~j!.

~q,ab;q!`@~11j!~11j21!#3/2

2Ap~aj21,bj;q!`
2 L3/2

~11j!2L,

~3.9!

ZL
(a)~j!.

~j2a22;q!`

~a21bj2;q!`

@~11a!~11j2a21!#L,

~3.10!
he

ZL
(b)~j!.

~j22b22;q!`

~ab21j22;q!`

@~11j2b!~11b21!#L

~3.11!

asL→` when Rej.0.

B. Asymptotic formula for ZL ,N

In this section we study the asymptotic behavior ofZL,N .
First we notice

ZL~j!5 (
N50

L

ZL,Nj2N. ~3.12!

The average density of particles is given by
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^r&5j2 lim
L→`

1

L

]

]j2
ln ZL~j!. ~3.13!

Basically we can expect that each value of the fugacityj2

corresponds to each value of the density. Then the den
fugacity relation is invertible and the equivalence of the
nonical and the grand canonical ensemble holds. For
model, however, there appears a situation where the equ
lence of the ensembles fails. For this case, we have to
back to Eq.~3.12! and use the inversion of it,

ZL,N5
1

2p i EC1

dj
ZL~j!

j2N11
, ~3.14!

whereC1 is a contour that encircles the origin anticlockwis
Notice that Eq.~3.14! is always true for a finiteL since
ZL(j) is a polynomial of degree 2N. This formula also has
an advantage that it allows us to obtain not only the expon
of the asymptotic behavior ofZL,N but also the prefactor o
it.

In order to find the relationship between the density a
the fugacity and derive the asymptotic expression ofZL,N ,
we need to know, for a give value ofj, which term in Eq.
~3.3! gives the main contribution toZL(j). For notational
convenience we definej05r/(12r).

When ã1b̃.1 (ab,1). We have the following three
cases.

~i! Case 0,j,a. The main contribution toZL(j) comes
from ZL

(a) . The density-fugacity relation~3.13! gives j
5Aaj0([ja). In order for this value to be in the region
,j,a, the density r should satisfyr,12ã,b̃. The
asymptotic behavior ofZL,N

(a) can be obtained by applying th
steepest descent method.

~ii ! Case a,j,b21. The main contribution toZL(j)
comes fromZL

(0) . The density-fugacity relation~3.13! gives
j5j0. In order for this value to be in the regiona,j

,b21, the density r should satisfy 12ã,r,b̃. The
asymptotic behavior ofZL,N

(b) can be obtained by applying th
steepest descent method.

~iii ! Casej.b21. The main contribution toZL(j) comes
from ZL

(b) . The density-fugacity relation~3.13! gives j
5Aj0 /b([jb). In order for this value to be in the regio
j.b21, the densityr should satisfy 12ã,b̃,r. The
asymptotic behavior ofZL,N

(0) can be obtained by applying th
steepest descent method.

When ã1b̃,1 (ab.1). We have the following three
cases.

~i! Case 0,j,Aa/b. The main contribution toZL(j)
comes fromZL

(a) . The density-fugacity relation~3.13! gives
j5ja . In order for this value to be in the region 0,j

,Aa/b, the densityr should satisfyr,b̃,12ã.
~ii ! Casej.Aa/b. The main contribution toZL(j) comes

from ZL
(b) . The density-fugacity relation~3.13! gives j

5jb . In order for this value to be in the regionj.Aa/b, the
densityr should satisfyb̃,12ã,r.

~iii ! Casej5Aa/b. So far we have not seen the values
the fugacity that correspond to the regionb̃,r,12ã. It
ty-
-
ur
a-
o

.

nt

d

f

turns out that this is related to the fact that the dens
fugacity relation~3.13! breaks down atj5Aa/b. Notice that
ZL,N

(a) (j) andZL,N
(b) (j) in Eqs.~3.10! and~3.11! have a pole at

this point. Physically, this is related to the existence o
shock. It might seem difficult to know the asymptotic beha
ior of ZL,N for this case. But this is not the case. Let
employ Eq.~3.14! and take the contour as a circleCR with
the radiusR. As long asL is finite, we can change the radiu
R as we wish. To know the asymptotic behavior ofZL,N , we
want to use Eqs.~3.9!–~3.11! and apply the steepest desce
method. It turns out that the saddle point associated w
ZL

(a)(j) @ZL
(b)(j)# is at j5ja (j5jb) and the contribution

from ZL
(0)(j) is smaller than the others. Hence, to apply t

steepest descent method, we have to take the radius o
contour as R15ja(.Aa/b) for ZL

(a)(j) and as R2

5jb(,Aa/b) for ZL
(b)(j). At first let us takeR as R2. We

have

ZL,N.
1

2p i ECR2

dj

j

~a22j2;q!`

~a21bj2;q!`

@~11a!~11j2a21!#L

j2N

1
1

2p i ECR2

dj

j

~b22j22;q!`

~ab21j22;q!`

@~11j2b!~11b21!#L

j2N
.

~3.15!

To apply the steepest descent method to the first term,
have to modifyCR2

to CR1
. Since the integrand of the firs

term has a pole atAa/b, there appears a contribution from
the pole when the contour is modified. More explicitly, w
see

1

2p i ECR1

dj

j

~a22j2;q!`

~a21bj2;q!`

@~11a!~11j2a21!#L

j2N

5
1

2p i ECR2

dj

j

~a22j2;q!`

~a21bj2;q!`

@~11a!~11j2a21!#L

j2N

2
~a21b21;q!`~11a!L~11b21!L

~q;q!`~ab21!N
. ~3.16!

Now we can apply the steepest descent method to the
integrals. But it turns out that the contribution from the po
gives the asymptotic behavior ofZL,N for this case.

Combining the above results, we see that there are
regions in theã-b̃ plane, in each of which the asymptot
behavior ofZL,N in the thermodynamic limit has a differen
form. We refer to these four phases as phaseA, B, C, andD.
The asymptotic expression ofZL,N in each phase is given b
the following.

Phase A: ã,12r,b̃.r

ZL,N.ZL,N
(a) .

~a21j0 ;q!`

~bj0 ;q!`

3
1

A2pãL2N~12ã !NrN11/2~12r!L2N11/2
.

~3.17!
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Phase B: ã.12r,b̃,r

ZL,N.ZL,N
(b) .

~b21j0
21 ;q!`

~aj0
21 ;q!`

3
1

A2pb̃N~12b̃ !L2NrN11/2~12r!L2N11/2
.

~3.18!

Phase C: ã.12r,b̃.r

ZL,N.ZL,N
(0) .

ãb̃~ ã1b̃11!~q,abq;q!`

~ã1r21!2~ b̃2r!2~j0
21aq,j0bq;q!`

2

3
1

2pL2r2N~12r!2L22N
. ~3.19!

Phase D: ã,12r,b̃,r

ZL,N.
~12ã2b̃ !~a21b21q;q!`

~12ã !~12b̃ !~q;q!`

3
1

ãL2N~12ã !Nb̃N~12b̃ !L2N
~5ZL,N

(d) !. ~3.20!

These are simple generalization of the results in@15# for the
totally asymmetric case.

C. J and v in the thermodynamic limit

Now it is straight forward to calculate the current of th
ordinary particlesJ and the speed of the defect particlev in
the thermodynamic limit. The results are summarized as
lows:

Phase A: J5(12q)r(12r) andv5(12q)(ã2r).

Phase B: J5(12q)r(12r) andv5(12q)(12b̃2r).
Phase C: J5(12q)r(12r) andv5(12q)(122r).

Phase D: J5(12q)@r(ã2b̃)1b̃(12ã)# and v5(1

2q)(ã2b̃).

IV. DENSITY PROFILE

Now we turn to consider the average density profile. As
the preceding section, we first calculate the density in
grand canonical ensemble. In the grand canonical ensem
the ~unnormalized! average density at sitej is defined by
l-

n
e
le,

^nj&L
(u)~j!5 (

t1 ,t2 , . . . ,t̂ j ,•••,tL

^Vu)
k51

j 21

@t jj
2D1~12t j !E#

3j2D )
k5 j 11

L

@t jj
2D1~12t j !E#uV&. ~4.1!

To translate the results in the grand canonical ensemble
those in the canonical ensemble, we need the formula

^nj&L,N
(u) 5

1

2p i EC1

dj
^nj&L

(u)~j!

j2N11
. ~4.2!

Now we explain the main idea how to compu
^nj&L

(u)(j). Details of the computation are not presented h
since they are similar to those in@21#. Since it is easier to
calculate the density difference than the density itself,
rewrite the density at sitej as

^nj&L5 (
k5 j

L21

~^nk&L
(u)~j!2^nk11&L

(u)~j!!1^nL&L
(u)~j!.

~4.3!

At the right boundary, we have

^nL&L
(u)~j!5

j2

b̃
^WuCL21uV&. ~4.4!

A similar formula can be found for the left boundary as we
As for the computation of̂nk&L

(u)(j)2^nk11&L
(u)(j), we no-

tice that

^nk&L
(u)~j!2^nk11&L

(u)~j!5j2~^WuCk21DCL2kuV&

2^WuCkDCL2k21uV&!

5j2^WuCk21~DC

2CD!CL2k21uV&

5j2^WuCk21~DE

2ED!CL2k21uV&. ~4.5!

By using the two facts thatDE2ED is a simple diagonal
matrix and that the resultant series can be summed up
using a formula for theq-Hermite polynomials, it turns out to
be possible to derive an integral expression of^nk&L

(u)(j)
2^nk11&L

(u)(j). If we sum up these terms fromk5 j to k
5L21, after some computation, we get

(
k5 j

L21

~^nk&L
(u)~j!2^nk11&L

(u)~j!!5I 11I 2 , ~4.6!

where
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I 15
j

4
~ab;q!`~q;q!`

3 E dz1

2p iz1
E dz2

2p iz2

3
~z1

2 ,z1
22 ,z2

2 ,z2
22 ;q!`@~11jz1!~11jz1

21!#L21

~aj21z1 ,aj21z1
21 ,qz1z2 ,qz1

21z2
21 ,qz1z2

21 ,qz1
21z2

21 ,bjz2 ,bjz2
21 ;q!`~z21z2

212z12z1
21!

,

~4.7!

I 25
j

4
~ab;q!`~q;q!`

3 E dz1

2p iz1
E dz2

2p iz2

3
~z1

2 ,z1
22 ,z2

2 ,z2
22 ;q!`@~11jz1!~11jz1

21!# j 21@~11jz2!~11jz2
21!#L2 j

~aj21z1 ,aj21z1
21 ,qz1z2 ,qz1

21z2
21 ,qz1z2

21 ,qz1
21z2

21 ,bjz2 ,bjz2
21 ;q!`~z21z2

212z12z1
21!

.

u

es
a

r

ity
le

e

no

h
r

ry

ith

ry
When 0,aj21,bj,1, the contours ofz1 and z2 are both
unit circles. For other values of the parameters, the conto
are modified so that the analyticity ofI 1 and I 2 are ensured.

Combining the results for̂ nj&L
(u)(j) with the formula

~4.2!, we obtain the density profile of the ordinary particl
in the canonical ensemble. The density at the right bound
is computed by using Eq.~4.4!. The integralI 1 gives us the
density at bulk region, which turns out to ber except for the
phaseD. Of course this is consistent with the fact that we a
now dealing with the system with the fixed densityr. The
integral I 2 contains the information about how the dens
decays near the right boundary. The density near the
boundary can be found by noticing the symmetry~2.10!. The
results are summarized in the following.

Phase A(ã,12r and b̃.r; a.j0 and b,1/j0). The
average density in the bulk region takes the constant valur.
The densities at boundaries are given by

^n1&L5r, ^nL&L5
12ã

b̃
r. ~4.8!

Notice that the density near the left boundary does
change and takes the constant valuer. Computation of the
density near the right boundary shows that the phaseA sub-
divides into three phases.

PhaseA1. This phase corresponds to

r,b̃,
r

r1~12r!q
, b̃,

A~12ã !r

Aã~12r!1A~12ã !r
~4.9!

in the ã-b̃ plane and to

q/j0,b,1/j0 , b.1/Aaj0 ~4.10!

in the a-b plane. Let us denote the distance from the rig
boundary asl 5L2 j 11 from now on. Then the density nea
the right boundary decays exponentially as

^nj&L5r2
~ab2j021!~q,a21b22j0

21q;q!`

~11abj0!~11b!~a21b21q,b21j0
21q;q!`

3exp@2 l /r # ~4.11!
rs

ry

e

ft

t

t

with the correlation length

r 2152 lnF ã~12r!

12b̃
1

~12ã !r

b̃
G . ~4.12!

PhaseA2. This phase corresponds to

~12r!q2

r1~12r!q2
,ã,12r, b̃.

A~12ã !r

Aã~12r!1A~12ã !r
~4.13!

in the ã-b̃ plane and to

j0,a,j0q22, b,1/Aaj0 ~4.14!

in thea-b plane. The density profile near the right bounda
decays exponentially as

^nj&L5r2
Aj0~11aj0!~ab,bj0 ;q!`~q;q!`

4

2Aap~Aaj0
21q,Aa21j0,bAaj0;q!`

2

exp@2 l /r #

l 3/2

~4.15!

with the correlation length

r 21522 ln@Aã~12r!1A~12ã !r#. ~4.16!

The decay of the density is not purely exponential but w
algebraic corrections.

PhaseA3. This phase corresponds to

ã,
~12r!q2

r1~12r!q2
, b̃.

r

r1~12r!q
~4.17!

in the ã-b̃ plane and to

a.j0q22, b,qj0
21 ~4.18!

in thea-b plane. The density profile near the right bounda
decays exponentially as

^nj&L5r2
j0~12ab!~12a21j0q22!

~12bj0q21!~11aq!~11j0q21!
exp@2 l /r #

~4.19!

with the correlation length
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r 215 ln
q

@ã1~12ã !q#@r1~12r!q#
. ~4.20!

PhaseB (ã.12r and b̃,r; a,j0 andb.1/j0). This
phase is symmetric to the phaseA. All results can be ob-
tained by using the symmetry~2.9!. The average density in
the bulk region takes the constant valuer and does not
change near the right boundary. The densities at bounda
are given by

^n1&L512
12b̃

ã
~12r!, ^nL&L5r. ~4.21!

PhaseB1. This phase corresponds to

12r,ã,
12r

12r1rq
, ã,

A~12b̃ !~12r!

Ab̃r1A~12b̃ !~12r!
~4.22!

in the ã-b̃ plane and to

j0q,a,j0 , b.
j0

a2
~4.23!

in the a-b plane. The density near the left boundary deca
exponentially with the correlation length

r 2152 lnF b̃r

12ã
1

~12b̃ !~12r!

ã
G . ~4.24!

PhaseB2. This phase corresponds to

rq2

12r1rq2
,ã,12r, ã.

A~12b̃ !~12r!

Ab̃r1A~12b̃ !~12r!
~4.25!

in the ã-b̃ plane and to

j0
21,b,j0

21q22, a,b,
j0

a2
~4.26!

in the a-b plane. The density profile near the left bounda
decays exponentially with the correlation length

r 21522 ln@Ab̃r1A~12b̃ !~12r!#. ~4.27!

PhaseB3. This phase corresponds to
ies

s

b̃,
rq2

12r1rq2
, ã.

12r

12r1rq
~4.28!

in the ã-b̃ plane and to

b.j0
21q22, a,j0q ~4.29!

in the a-b plane. The density profile near the left bounda
decays exponentially with the correlation length

r 215 ln
q

@b̃1~12b̃ !q#@12r1rq#
. ~4.30!

PhaseC (12ã,r,b̃; a,j0 andb,j0
21). The average

density in the bulk region takes the constant valuer. The
densities at boundaries are given by

^n1&L512
1

ã
~12r!2, ^nL&L5

r2

b̃
. ~4.31!

The average density decays near the right boundary as

^nj&L5r2Ar~12r!

p

1

l 1/2
. ~4.32!

The density decays algebraically and hence the correla
length is infinite. The density decay at the left boundary c
be obtained from the symmetry relation~2.10!. This is the
same as the result for theq50 case in@15#.

PhaseD (ã,12r andb̃,r; a.j0 andb.j0
21). In this

phase, there is a shock. Hence the average density at
region is not a constant. For the densities at the bounda
we have

^n1&L5b̃, ^nL&L512ã. ~4.33!

There are two regions in the system. One is the low den
region with the densityb̃ at left side and the other is the hig
density region with the density 12ã at right side. The two
regions are separated by a sharp interface, which we c
shock. WhenL is large, the average density profile is d
scribed by a continuous functionn(x) in terms of the res-
caled variablex5 j /L (0<x<1). The derivative ofn(x) is
found to be

dn~x!

dx
.C exp@LF~x!#, ~4.34!

where
F~x!5x ln$~11a!@11a21G~x!#%1~12x!ln$@11bG~x!#~11b21!%, ~4.35a!

G~x!5
2x1r2ab~12x2r!1A@~x2r!21ab~12x2r!#214abr~12r!

2b~12r!
. ~4.35b!
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The constantC in Eq. ~4.34! is determined by the normaliza
tion condition,

E
0

1dn~x!

dx
dx512ã2b̃. ~4.36!

It turns out that the functionF(x) takes the maximum value
at x05(12ã2r)/(12ã2b̃). If we expandF(x) around
x5x0 to the second order and approximate Eq.~4.34! by a
Gaussian, we find

dn~x!

dx
.A L

2p@r~ã2b̃ !1b̃~12ã !#
~12ã2b̃ !2

3expS 2
L~12ã2b̃ !2~x2x0!2

2@r~ã2b̃ !1b̃~12ã !#
D . ~4.37!

This is essentially the same expression as that for the to
asymmetric case@15#. But it should be remarked that Eq
~4.37! is only a consequence of the above approximation;
correct formula is given by Eq.~4.34! with Eqs.~4.35a! and
~4.35b!.

We thus obtain the phase diagram shown in Fig. 1. As
have seen, phaseA ~B! for the current subdivides into thre
phasesA1 , A2, and A3 (B1 , B2, and B3). This phase dia-
gram has a richer structure than that for the totally asymm
ric case@15# for which phaseA ~B! for the current subdivides
into only two phases and phasesA3 andB3 are not observed
The situation is analogous to that for the ASEP with op
boundaries@20,21#.

FIG. 1. Phase diagram for the current and the correlation len
The phase boundaries for the current are represented by the
solid lines; those for the correlation length are represented by
thin solid lines. The dotted lines are not the phase boundaries. T
are drawn for convenience.
lly

e

e

t-

n

V. CONCLUDING REMARKS

In this paper, we have considered the partially asymme
simple exclusion process on a ring with one defect partic
We have computed the current of the ordinary particles,
speed of the defect particle, and the density profile of
ordinary particles seen from the defect particle. The m
result of this paper is the identification of the phase diagr
for the correlation length shown in Fig. 1. It turns out that t
phase diagram has a richer structure than that for the to
asymmetric case.

There are several possible applications and genera
tions of the analysis in this paper. First there are seve
models for which the partially asymmetric case has not b
solved. For instance, we can generalize the analysis in@9# for
the totally asymmetric case to the partially asymmetric ca
Second, we did not study the case whereq>1 in this paper
since our main interest was the phase structure of the m
and it is obvious that there is a phase transition atq51. But
it would be interesting to apply the similar analysis to th
case and compute the physical quantities exactly. In addit
if we consider the limitq→1 carefully, the crossover behav
ior should be observed since this limit is associated with
change of the universality of the model from KPZ univers
ity class to EW universality class@14#. Here we only remark
that the corresponding ASEP with open boundaries h
been considered in@22# for theq51 case and in@23# for the
q.1 case. Lastly, it would be also interesting to general
our analysis to the multispecies models@17,18,26,30–34#.
Compared to the ASEP, much less is known about th
models. Several investigations are now in progress@35#. The
results about these will be reported elsewhere.
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APPENDIX A: DENSITY FLUCTUATION FOR THE
PARTIALLY ASEP WITH OPEN BOUNDARIES

In the main text of this paper, we are mainly interested
the system with a fixed number of particles. The physi
quantities are computed for a given value of the densityr.
When we consider the ASEP with open boundaries, ho
ever, the situation becomes different. The system is c
nected to particle reservoirs at boundaries; the total num
of particles can fluctuate. As pointed out in the main text,
stationary state of the partially ASEP with open boundar
is obtained by settingj51 in Eq. ~2.11!. Moreover, the
probability that the partially ASEP with open boundaries h
N particles is given byZL,N /ZL(j51). By using the
asymptotic expressions ofZL(j51) in @20# and those of
ZL,N

( f ) with f 50,a,b,d in Eqs.~3.17!–~3.20!, it is possible to
obtain the asymptotic behavior of the probability measure
the particle density whenL→`. In particular, we can com-
pute the average and the variance of the density for the
tially ASEP with open boundaries. In this appendix we
not explain even the basic properties of the model and
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some terminologies without definition. See@20,21,25,36–38#
for instance.

First we study how the asymptotic expression ofZL,N in
Eqs. ~3.17!–~3.20! looks like as a function of 0,r,1. As
an example we considerZL,N

(a) . Let us rewrite Eq.~3.17! as

ZL,N
(a) .

~a21j0 ;q!`

A2pr~12r!~bj0 ;q!`

exp@LS~r!#, ~A1!

with

S~r!52 ln@ã12r~12ã !rrr~12r!12r#. ~A2!

Then it is easy to see

]S

]r
5 lnF ã~12r!

~12ã !r
G ~A3!

becomes zero atr5ã. In addition, we have

]2S

]r2
52

1

r~12r!
~,0! ~A4!

for 0,r,1. HenceZL,N
(a) takes a single maximum value a

N5ãL. If we expandS(r) aroundr5ã and substitute it
into Eq. ~A1!, we find

ZL,N
(A) .F 1

ã~12ã !
G L

expF2
L~r2ã !2

2ã~12ã !
G , ~A5!

when r;ã. The width of the peak if of orderL21/2. As L
goes to infinity, we expect that the probability measure of
density is given by a Dirac measuredã . Similarly ZL,N

(b) takes

a maximum value atr512b̃; ZL,N
(0) takes a maximum value

at r51/2. Now we explain the asymptotic behavior of th
probability measure of the density and compute the aver
and the variance of the density.

Low density phase(ã, 1
2 ,b̃.ã). From the results in the

main text, we see the following. For small densities th
satisfyr,12ã andr,b̃, the asymptotic behavior ofZL,N

is determined byZL,N
(a) . For larger values ofr, we have

ZL,N.ZL,N
(0) when 12ã,r,b̃ and ZL,N.ZL,N

(b) when r.1

2ã. As L goes to infinity, however, the main contributio
comes fromZL,N

(a) in this phase.
By using Eq.~A5! we compute the average and the va

ance of the density to get

^r&5ã, ~A6!

^~r2^r&!2&.
ã~12ã !

L
. ~A7!

The variance of the density goes to zero asL→`.
High density phase(b̃, 1

2 ,ã.b̃). For large densities tha
satisfyr.12ã andr.b̃, the asymptotic behavior ofZL,N

is determined byZL,N
(a) . For smaller values ofr, we have

ZL,N.ZL,N
(0) when 12ã,r,b̃ and ZL,N.ZL,N

(a) when r,1
e

ge

t

2ã and r,b̃. As L goes to infinity, however, the main
contribution comes fromZL,N

(b) in this phase.
The average and the variance of the density are foun

be

^r&512b̃, ~A8!

^~r2^r&!2&.
b̃~12b̃ !

L
. ~A9!

Maximal current phase(ã. 1
2 ,b̃. 1

2 ). For small densities
that satisfyr.12ã, we haveZL,N.ZL,N

(a) ; for large densi-

ties that satisfyr.b̃, we haveZL,N.ZL,N
(b) . In the middle

region of densities that satisfy 12ã,r,b̃, the asymptotic
behavior ofZL,N is determined byZL,N

(0) . As L goes to infin-
ity, the main contribution comes fromZL,N

(0) in this phase.
The average and the variance of the density are foun

be

^r&5
1

2
, ~A10!

^~r2^r&!2&.
1

8L
. ~A11!

This formula agrees with the one derived in@38# for the
special caseq50,a5b51.

Coexistence line(ã5b̃, 1
2 ). For small densities that sat

isfy r,ã, we haveZL,N.ZL,N
(a) ; for large densities that sat

isfy r.12ã, we haveZL,N.ZL,N
(b) . In the middle region of

densities that satisfyã,r,12ã, the asymptotic behavio
of ZL,N is determined byZL,N

(d) . When we setã5b̃ in Eq.
~3.20!, we notice thatZL,N

(d) does not depend onr. This im-
plies that the probability measure of the density does
have a peak. In fact the probability measurew(r)dr in the
thermodynamic limit is

w~r!5H 1

122ã
, ã,r,12ã

0, otherwise.

~A12!

Hence we obtain

^r&5
1

2
, ~A13!

^~r2^r&!2&.
~122ã !2

12
. ~A14!

Notice that the variance of the density is finite for th
case. This is related to the fact that we see a shock on
coexistence line. The position of the shock can be anywh
@11,36,39#. This leads to a macroscopic change of the to
number of particles or the finite value of the variance of t
density.
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